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Unattainability of Carnot efficiency in the Brownian heat engine
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We discuss the reversibility of the Brownian heat engine. We perform an asymptotic analysis of the Kramers
equation on a Bu¨ttiker-Landauer system and show quantitatively that Carnot efficiency is unattainable even in
the fully overdamped limit. The unattainability is attributed to inevitable irreversible heat flow over the
temperature boundary.

PACS number~s!: 05.40.2a, 05.10.Gg, 05.70.Ln, 87.10.1e
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How efficiently can a Brownian heat engine work? Th
question is important not only for the construction of
theory of molecular motors@1# but also for the foundations
of nonequilibrium statistical physics. Like the Carnot cyc
the Brownian heat engine can extract work from the diff
ence of temperature between heat baths, where the Brow
working material operates as a transducer of thermal en
into mechanical work. The features of this engine are:~1! it
operates autonomously, and~2! it is driven by afinite differ-
ence of temperature between heat baths which both con
the working material simultaneously. Thus, this eng
works because the system is out of equilibrium. Feynm
et al. @2# devised what is called Feynman’s ratchet, whi
can rectify thermal fluctuations to produce work using t
difference of temperature between two thermal baths. B¨tt-
iker @3# and Landauer@4# proposed a simpler type of Brown
ian motor and pointed out that one could extract work ev
using a simple heat engine where a Brownian particle i
periodic potential is subject to heat baths of spatially perio
temperatures@5#.

One crucial point in Brownian engines is the efficien
@2,6–17#. Feynmanet al. claimed that their thermal ratche
can operate reversibly, resulting in Carnot efficiency. R
cently, however, some authors have claimed that this is
correct, while some have supported it. Parrondo and Esp˜ol
suggested that Feynman’s ratchet should not work revers
since the engine is simultaneously in contact with heat ba
at different temperatures@6#. Sekimoto devised the so-calle
stochastic energetics and applied it to Feynman’s ratchet@7#.
He showed numerically that the efficiency is much less th
that of Carnot. Hondou and Takagi showed that revers
operation of Feynman’s ratchet is impossible by usingreduc-
tio ad absurdum@10#. Magnasco and Stolovitzky studie
how the engine generates motion by a detailed analysis o
phase space@11#. On the other hand, Sakaguchi sugges
that Feynman’s ratchet can operate reversibly by usin
‘‘stochastic boundary condition’’@8#. A similar result is also
found in Ref. @15# ~not for Feynman’s ratchet but for th
Büttiker-Landauer system!, which we will discuss in detail
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later. These studies remind us that there is difficulty conce
ing the energetic description of Brownian systems, becau
naive application of conventional energetics formulated i
thermodynamic and/or equilibrium system to a Browni
system may lead to incorrect results.

The operation of Brownian engines is done by the engi
themselves and the engines are, therefore,out ofequilibrium.
To clarify the nonequilibrium nature of Brownian heat e
gines and to discover how we should apply energetics
them, it is important to make a quantitative analysis of t
efficiency without adopting oversimplifications for the anal
sis that lose the function of a heat engine. Because Fe
man’s ratchet is somewhat complex to make a rigoro
analysis, it seems more suitable to discuss the Bu¨ttiker-
Landauer @3,4# system, which is the simplest system
Brownian motors. Recently, Matsuo and Sasa analyzed
energetics of the Bu¨ttiker-Landauer system by a renormaliz
tion method@15#. They claimed that the system approach
Carnot efficiency in the overdamping limit during a qua
static process@18#. Their analysis was based on a rigoro
calculation starting from Kramers equation, and the resu
clear except for one point: They assumed that the momen
degree of freedom is always in equilibrium with the he
bath because the system is overdamped@19#. This assump-
tion is not easy for us to accept because the system is si
lar at the transition point@20# where the temperature of th
heat bath changes suddenly. We conjectured that the ess
of the mechanism of the Brownian heat engine is conc
trated at these singular points and that the nature of th
nonequilibrium engines will emerge by analysis of the
Thus we will discuss the energetics of the Bu¨tikker-Landauer
system paying attention to the transition points. The res
will also give us insight about how we should apply ‘‘sto
chastic energetics’’@7# to overdamped systems with spac
dependent temperature.

Let us consider the one-dimensional Brownian syst
that Bütikker and Landauer discussed, where working p
ticles operate due to the broken uniformity of the tempe
ture of the heat baths@3,4#. While Bütikker and Landauer
started their discussion from the overdamprd equation of
system, we start from the more basic standpoint of the
derdamped description, from which the overdamped eq
6021 ©2000 The American Physical Society



h

u

m

em

od
e

en

a
ra

ki
in
nd
h
tl

he
ob
er

rr

ef
nt
le
ra
e
e

w
an
rs

si

e-
er
he

m
of

e
en-

is
bath
in

t

to

to
e
e

ticle
an-

nsi-
ob-
ty

n of

6022 PRE 62TSUYOSHI HONDOU AND KEN SEKIMOTO
tion is obtained by eliminating the momentum variable. T
probability density in phase spacer(p,q) obeys the Kramers
equation@21#

]r~p,q!

]t
52S ]Jq

]q
1

]Jp

]p D
52K~q!

]r~p,q!

]p
2

p

m

]r~p,q!

]q

1
g

m

]

]p Fpr~p,q!1mkBT~q!
]r~p,q!

]p G , ~1!

where K(q)52]U/]q; g, m, Jq , and Jp are the friction
constant, the mass of the particle, and the probability c
rents in space and in momentum, respectively@22#. The po-
tential U(q) satisfiesU(q)5Ur(q)1gq, whereUr(q1L)
5Ur(q), g (.0) is the gradient of the global slope~the
load!, and L is the period. The temperature has the sa
spatial period as the potential,T(q1L)5T(q). In this
Büttiker-Landauer system, there are two heat baths with t
peraturesTh ~for the hot bath! and Tc ~for the cold bath!.
Thus, there are two transition points in a spatial peri
where the thermal bath affecting the particle changes. H
we restrict ourselves to the case thatTc /Th5O(1) for sim-
plicity. The system is known to operate as a molecular
gine@3,4,8,15# because the particle canmoveagainst the glo-
bal gradient of the potential. The globally unidirection
motion is attributed to the difference between the tempe
tures of the baths, since the hot bath can activate the wor
particle more than the cold bath. Suppose that two work
particleclimb the potential, where one is in the hot bath a
the other is in the cold bath. Then the working particle in t
hot bath reaches the top of the potential hill more frequen
than that in the cold bath, leading to global motion in t
system. Thus, one can store work in proportion to the pr
ability current. To make an energetic analysis, we consid
‘‘replica’’ particle, of which the energy isE5p2/2m
1U(q). Here, the ensemble average over the replicas co
sponds to the thermodynamic limit@7#.

It has been shown that this engine can have Carnot
ciency if the irreversible heat transfer at the transition poi
is physically negligible. Any Brownian motor is irreversib
when it operates with finite probability current. Thus, ope
tion with Carnot efficiency, if possible, must be in th
‘‘stalled state’’ @15#, where the probability current in spac
disappears,Jq(q)50 ~in an overdamped description! or
*dpJq(p,q)50 ~in an underdamped description!. Quasi-
static operation requires this stalled state. Therefore,
evaluate whether and how heat flows irreversibly at the tr
sition point by obtaining the stationary solution in Krame
equation in the stalled state@Eq. ~1!#. For this purpose, we
will restrict ourselves to the special regionqP@2 l h ,l c#
around the transition point,q50, wherel h ( l c) is the width
between the transition point and a point in the hot~cold! bath
that satisfies the following inequality:

l th! l x!Lx ~x5h or c!, ~2!

whereLh (Lc) is the width of the hot~cold! bath (Lh1Lc
5L), and l th is the characteristic length scale of the tran
tion region in which the probability density is different from
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that of thermal equilibrium. The lengthl th is the product of
the thermal velocityv th(;AkBT/m) and the velocity relax-
ation timet(5m/g): l th;v tht. The choice ofl x does not
alter the following result as long as the inequality Eq.~2! is
satisfied. Although we will discuss only one transition r
gion, the asymptotic behavior does not differ in the oth
transition region. Hereafter we apply a normalization of t
probability densityr(p,q) as @23#

E
2`

`

dpE
2 l h

l c
dqr~p,q!51. ~3!

Now, we will formulate the irreversible heat transfer fro
a heat bath to the working particle. The right-hand side
Kramers equation@Eq. ~1!# has two parts. The first and th
second terms are a Liouville operator on the probability d
sity r(p,q) and thus preserve the energy. The last term
what describes the energy transfer between the heat
and the particle, for which the probability current
momentum space is writtenJp

irr 52(g/m)@pr(p,q)
1mkBT(q)]r(p,q)/]p#. Because the probability curren
disappears,Jp

irr 50, for the probability density at equilibrium
r(p,q)} exp$2@p2/2m1U(q)#/kBT%, the energy flow
through Jp

irr can be sufficiently described only whereq
P@2 l h ,l c#. The average heat transfer from the hot bath
the particle per unit time,̂dQh /dt&, is

K dQh

dt L ;E
2`

`

dpE
2 l h

0

dq
]E

]p
Jp

irr

52E
2`

`

dpE
2 l h

0

dq
p

m

g

m Fpr~p,q!

1mkBT~q!
]r~p,q!

]p G . ~4!

By integration by parts through momentum spacep and the
property thatr(p,q) exponentially decreases to zero asp
→6`, we obtain

K dQh

dt L 522
g

mE
2`

`

dpE
2 l h

0

dqS p2

2m
2

kBT~q!

2 D r~p,q!

[22
g

m K p2

2m
2

kBTh

2 L
h

. ~5!

This is the formula for the heat transfer from the hot bath
the particle@24#. When the system is in equilibrium with th
heat bath, the heat transfer^dQh /dt& disappears, because th
theory of equipartition requireŝp2/2m&5kBT/2. This also
shows that the energy exchange between the replica par
and the thermal bath is dominant only near the thermal tr
sition point q50, where the average kinetic energyp2/2m
deviates fromkBT/2.

We discuss here how the energy flows around the tra
tion point. As we are analyzing the stalled state, the pr
ability densityr(p,q) is stationary. Thus, the energy densi
rE(q)5*2`

` dp@p2/2m1U(q)#r(p,q) is stationary. Be-
cause there is no work in the stalled state, the conservatio
energy requires thatd^Qh1Qc&/dt50. This shows that the
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same quantity of the heat that flows from the hot bath to
particle also flows from the particle to the cold bat
^dQh /dt&52^dQc /dt&. It should also be noted that, in th
stalled state, the efficiency vanishes except when^dQh/dt&
52^dQc/dt&50, because work, the numerator of the ef
ciency, is absent here. Quasistatic operation is revers
only if Eq. ~5! vanishes. Therefore the quantity^dQh /dt&
sufficiently characterizes the operation in the stalled state
thus we will analyze it in detail. Note that the followin
equality is simultaneously derived@25#:

K dQh

dt L 5E
2`

`

dp
p2

2m

p

m
r~p,q!U

q50

. ~6!

This formula confirms that the irreversible heat transfer
carried microscopically as the kinetic energy of the parti
at a transition point.

It is known, for example, from the kinetic theory of gas
@26#, that there is finite heat transferI in the system where a
Brownian particle of finite mass and friction is crossing ov
two regions with different temperatures, even if the two th
mal baths have no direct contact. This implies thatI
[^dQh /dt&.0. The authors of Ref.@15# assumed that the
heat transfer should disappear in the overdamped li
m/g→0. However, their assumption is not evidenta priori.
To reveal the validity of the assumption we have to perfo
an appropriate energetic analysis on the Kramers equa
which includes the degree of momentump, instead of on the
overdamped Fokker-Planck equation, which does not.

Hereafter, we will consider the asymptotic behavior of t
heat transferI in the limit of the overdamped process (g→
1` and/or m→0). To find the asymptotic behavior, it i
convenient to use the reference heat transferI * of unit mass
and friction in an arbitrary set of units:I * [I (m51,g51)
@27#. By Eq. ~5!, the reference heat transferI * reads:

I * 522K p2

2
2

kBTh

2 L
h

522E
2`

`

dpE
2 l h

0

dqS p2

2
2

kBTh

2 D r* ~p,q!, ~7!

where r* (p,q) is the probability density in the referenc
statem51 andg51. We call the probability densityr and
the heat transfer of arbitrary mass and friction in the units
generic probability density and the generic heat trans
Note that the following result is not altered if we have
different reference state. The choice of the valuesm51 and
g51 for the reference state is only for simplicity. In th
reference state, the characteristic length of the transition
gion l th* , where the probability density in momentump is out
of equilibrium is l th* 5v th* t* 5AkBT.

To evaluate the generic heat transfer@Eq. ~4!# in terms of
the reference heat transfer@Eq. ~7!#, we will find the relation
between the generic probability density with arbitrary ma
and frictionr(p,q) and the reference oner* (p,q). The po-
tential termK]r/]p of Kramers equation, Eq.~1!, is negli-
gible when one discusses the asymptotic behavior of
overdamping@28#. With the stationary condition]/]t50, in
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Eq. ~1!, we obtain a simple equation that describes station
flow in phase space around the boundaryq50:

p

m

]r~p,q!

]q
5

g

m

]

]p Fpr~p,q!1mkBT~q!
]r~p,q!

]p G . ~8!

We find here that this equation has a scaling property in m
and friction: The generic probability densityr(p,q) is ex-
pressed using the probability density of the reference s
r* (p,q),

r~p,q!5cr* S p

Am
,

g

Am
qD , ~9!

where the constant factorc should be determined by norma
ization @Eq. ~3!# @29#.

As q departs from the transition pointq50 farther than
the characteristic lengthl th , the probability density
approaches that of equilibrium, whererh(p,q)
5Chexp$2p2/2mkBTh% ~for q!2 l th), and rc(p,q)
5Ccexp$2p2/2mkBTc% ~for q@ l th). The coefficientsCh and
Cc are then required to satisfy the condition of continuity
the probability current. Thus we have

ChTh
3/25CcTc

3/2, ~10!

which is consistent with the condition derived for the ove
damped limit@4#. The remaining condition that determine
Cx is the normalization. Note that normalization of the pro
ability densityr is satisfactorily carried out even if the con
tribution from the transition region is neglected because
characteristic scale of the transition regionl th is much
smaller than the widthl x : l th / l x!1 (x5h or c) @Eq. ~2!#.
ThenCh andCc are determined as

Ch5
1

A2pmkBTh

Tc

Tcl h1Thl c
,

~11!

Cc5
1

A2pmkBTc

Th

Tcl h1Thl c
.

With these solutions and Eq.~9!, we obtain the relation be
tween the two normalized probability densitiesr and r*
@29#:

r~p,q!5
1

Am
r* S p

Am
,

g

Am
qD . ~12!

Note that this equation is valid even within the transiti
region.

We can now express the heat transferI in terms of the
reference heat transferI * . We rewriteI as

I 522
g

mE
2`

`

dpE
2 l h

0

dqS p2

2m
2

kBTh

2 D r~p,q!. ~13!

By a change of variables such thatp85p/Am, q8
5(g/Am)q @29#, we obtain
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I 522E
2`

`

dpE
2g l h /Am

0

dqS p2

2
2

kBTh

2 D rSAmp,
Amq

g D .

~14!

This yields, using Eq.~12!,

I 522E
2`

`

dpE
2g l h /Am

0

dqS p2

2
2

kBTh

2 D 1

Am
r* ~p,q!.

~15!

This integrand is dominant only near the transition poinq
50, with characteristic lengthl th* . As we are analyzing the
asymptotic behavior such thatm→0 and/org→`, the in-
equality (l th* !) l h!g l h /Am is satisfied. Because the contr
bution from the intervalqP@2g l h /Am,2 l h# to the integral
is negligible in Eq. ~15! compared with that fromq
P@2 l h ,0#, the interval of this integral may adequately b
replaced byqP@2 l h ,0#. Using Eq.~7!, we obtain one of the
main results of our paper@30#:

I;2
2

Am
E

2`

`

dpE
2 l h

0

dqS p2

2
2

kBTh

2 D r* ~p,q!5
1

Am
I * .

~16!

Because the characteristic length of the transition region v
ishes in the overdamped limit, the scaling property is ex
asymptotically.

From this result, we learn that the irreversible heat tra
fer at the transition point does not decrease when one t
the overdamped limit, which is in contrast to the claim
Ref. @15#. One way to take this limit is to increase the fri
tion constantg; then the heat transfer does not decrea
because the heat transferI does not depend ong. The other
way is to decrease the massm: then the heat transfer does n
decrease either, it increases with the power of 1/Am. The
result justifies the intuitive estimation by Dere´nyi and As-
tumian@19#. The heat flow is the result of broken symmet
of the probability density in momentum at the transiti
point, because the heat transfer disappears if the probab
density is symmetric in phase space, as shown by Eq.~6!.
Since an overdamped equation has no degree of freedo
describe the irreversible flow caused by the discontinuity
the temperature, the previous literature found Carnot e
ciency @15#.

Up to now, we have discussed how heat transfer betw
the two heat baths behaves in the overdamping process
found that the irreversible heat transfer does not decreas
the process. One finds, however, that the possible work
of the system may also vary according to the overdam
limit, because the probability current may vary due to chan
of the parametersg and m. Thus, it is not yet obvious
whether nonvanishing heat transferI itself reveals that the
system cannot attain Carnot efficiency in any condition
cluding the nonstalled state. Thus, in addition to the irreve
ible heat transfer discussed above, we will estimate the w
and work-induced heat transfer in an overdamped proce

We will return to the original Kramers equation@Eq. ~1!#
for a Büttiker-Landauer system. We have analyzed this eq
tion retaining both degrees of freedomp andq. However, we
do not have to consider a momentum degree of freed
n-
ct
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when we discuss work out of the Brownian system, beca
the work is a function only of the displacement of positio
Thus, we start the evaluation of the work using the ov
damped Fokker-Planck equation for the probability dens
P(q) of the system:

]P~q!

]t
52

]

]q
J~q!5

1

g

]

]q F]U~q!

]q
1

]~kBT~q!!

]q GP~q!,

~17!

where a periodic boundary condition is applied:P(0)
5P(L) and (dP/dquq50)5(dP/dq)uq5L . Explicit mass de-
pendence on the displacement of the system disappears i
overdamped limit. In stationary state,]P(q)/]t50, the
probability currentJ(q) is independent ofq. The probability
currentJ reads

J52
1

g F]U~q!

]q
1

]@kBT~q!#

]q GP~q!. ~18!

The equation forP(q) reads

]

]q F]U~q!

]q
1

]@kBT~q!#

]q GP~q!50. ~19!

This equation shows that change of the friction constang
does not alter the probability densityP(q). Thus, with Eq.
~18!, the probability currentJ scales asJ}g21. For a fixed
load potential, the work per unit timedW/dt is proportional
to the probability current. Thus the sole operationg→`
does not lead the system to Carnot efficiency, because
induced work~proportional toJ) decreases while the irre
versible heat@Eq. ~16!# does not decrease.

To find the mass dependence of the work, we conside
working particle obeying Stokes’ law with radiusr B , where
the mass and the friction are specified by one parameterr B :
g}r B andm}r B

3 . Thus we havedW/dt}J}g21}r B
21 . The

irreversible heat transferdQirr /dt that is independent o
work is just the heat transferI @Eq. ~16!#. Thus we have
dQirr /dt}m21/2}r B

23/2. The work-induced heat transferQW

that is proportional to the workW is proportional to the
probability current J @15#. Thus we obtaindQW /dt}J
}r B

21 . The three components determine the efficiency.
have

h5
dW/dt

dQW /dt1dQirr /dt
5

c1r B
21

c2r B
211c3r B

23/2
5

c1

c21c3 /Ar B

,

~20!

wherec1 , c2, andc3 are constants. The result shows that t
efficiency decreases monotonically to zero when one ta
the overdamped limitr B→0. This result is not altered even
one includes another transition point in the same period,
cause the asymptotic behavior of the two is the same.

In this paper, we have analyzed the energetics o
Brownian motor of Bu¨ttiker-Landauer type. We showe
quantitatively that irreversible heat transfer does not dis
pear even if one takes the overdamped limit (g→1` and/or
m→0). This result is in contrast to the claims in Ref
@8,15#. The mass dependence of the irreversible heat is c
sistent with the intuitive estimation in Ref.@19#. We further
analyzed the effect of nonvanishing irreversible heat tran
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on the efficiency and showed that, even in the fully ov
damped limit, Carnot efficiency is unattainable for a parti
obeying Stokes’ law. This shows that the maximum e
ciency of the Brownian motor is not attained in the stall
state. The result revealed that the Brownian heat engin
qualitatively different from heat engines for which the mo
efficient operation is quasistatic: A quasistatic process is
worst condition for the Brownian heat engine to work, wh
it is the best for the Carnot cycle.

The location of the irreversible heat transfer is the tran
tion region characterized by the thermal lengthl th . It is cer-
tain that the characteristic lengthl th can disappear in the
fully overdamped limit. However, the irreversible effect
the transition region cannot be eliminated. From the re
we also learn how to apply energetics to overdamped
tems with a space-dependent temperature: We should a
energeticsbefore taking the overdamped limit. Otherwise
we might fail in proper evaluation of the irreversible he
transfer within the transition region@8,15#, because energeti
interaction between the heat bath and the particle is car
out by the momentum exchange between them. When
.
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particle has smaller kinetic energy than that expected by
equipartition theorem, it receives kinetic energy from t
heat bath on average. Thus, if we lose the degree of mom
tum as in the overdamped equation, we cannot describe
existing physical process properly.

The present system cannot have maximum efficiency
quasistatic condition. This means that the maximum e
ciency is achieved with finite probability current, which
therefore accompanied by irreversible dissipation. Thus,
next challenging question is, ‘‘Is there any principle that d
termines the optimal efficiency in Brownian heat engines
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